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The log-derivative method of Johnson is generalized to solve inhomogeneous equations for 
scattering. Two versions of the method-applicable to half-collision and to two-potential 
inelastic collision problems, respectively-are presented. Both versions are tested for accuracy 
and convergence on simple one channel problems. The connection between the log-derivative 
and the R-matrix propagation methods is discussed in some theoretical and practical 
aspects. 0 1985 Academic Press, Inc. 

1. INTRODUCTION 

Two potential descriptions of scattering processes gives rise to many com- 
putationally involved problems in the present day investigations [14]. One can 
observe [46] a growing interest in algorithms for solving inhomogeneous 
equations arising from these investigations. The most reasonable way of developing 
such algorithms seems to be an adaptation of the techniques already established 
and proved in scattering calculations. The present paper is intended to contribute 
to this adaptation. 

Before specifying the particular goals it is necessary to give a description of 
problems to be considered. Two potential problems are usually formulated in such 
a way that one potential is weak and therefore the transition matrix for processes 
governed by it can be determined perturbatively. In the first order of the pertur- 
bation theory elements of the transition matrix are given by integrals involving the 
weak potential and the wave functions describing initial and final states of the 
system under consideration. 

Depending on the type of the initial state one can distinguish two cases of the 
two potential problems: 

(I) Half-collision problems, e.g., the problems arising from the recently 
proposed description of a wide class of photodissociation processes [3] (it is 
characteristic for the half-collision problem that the system is initially in a bound 
state); 

(II) Many channel scattering problems which are initially treated as com- 
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pletely or partially decoupled and then a perturbative procedure is applied for their 
recoupling. 

The well-known distorted wave or distorted-wave Born approximations and the 
recent corrected-coupled-state approximation [7, 81 should be quoted as examples 
here. 

The approximate transition matrices for these cases are related to the following 
two point boundary value problems for system of differential equations, 

[$+B(x)] w= Vx)$,(x), 

in case (I), 
in the case (II). (lb) 

The homogeneous part of these equations takes the usual form of coupled channel 
scattering equations with B representing the strong potential and including 
additionally channel energies and centrifugal terms. The weak potential occurs in 
the inhomogeneity term as the matrix V. tia(x) in this term stands for a bound state 
function, Iclb(x), in case (I) (a = b-bound) or for a scattering wavefunction, ti,,(x), in 
case (II) (c( = 0). I+$~(x) satisfies Eq. (1) with V set equal to zero and the boundary 
conditions: (la) and 

*o(x) x 4x)-n(x) %o; (lc) 

m and n are diagonal matrices of linearly independent solutions of Eq. (1) in the 
asymptotic region where both potentials vanish. Depending on the form of these 
solutions .Y and Y0 stand for the partial wave components of the transition or reac- 
tance matrices [9]. 

Now, it seems appropriate to comment on the present status in adapting to the 
above problems the existing scattering methods. Since these comments are not 
intended as an exhaustive review of the subject we will confine ourselves to the 
invariant imbedding methods. 

There are three papers which propose invariant imbedding algorithms for solving 
inhomogeneous equations related to the half-collision problems. Two of them, i.e., 
the paper by Schneider and Taylor [S] and the earlier one by Kulander and Light 
[4], give algorithms which are generalizations of the R-matrix propagation method 
[l&12]. So, these algorithms fall into the category of the approximate potential 
procedures [13]. The complementary category of the approximate solution 
procedures represents the algorithm of the paper by Singer, Freed, and Band [6]. 

While the popularity of the R-matrix propagation method is a good recommen- 
dation for the proposed generalized versions of this method, the usefulness of the 
approximate solution algorithm is not so evident. Although there are no doubts 
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about the overall adequacy of the approximate solution approach to half-collision 
equations, the particular realization of this approach, i.e., the Singer method, does 
not seem to be optimal. 

The Singer method consists in a numerical integration of the first order differen- 
tial equations for the transition matrices. One of these equations is essentially 
known from the earlier applications of the invariant imbedding technique to scat- 
tering theory [14, 151. Standard algorithms, such as the Runge-Kutta algorithm, 
are proposed for the integration. Being applicable to equations of general form, 
they cannot be expected to be very efficient in cases of definite properties. 

No invariant imbedding method has been proposed so far for the problems 
defined in case (II) above. Probably this is due to the fact that computational 
investigations of coupled inhomogeneous equations for this case have been only 
started in connection with the project intended to correct the coupled state 
approximation [7, 81. The algorithm currently used was developed from the 
method of Sams and Kouri [ 161. This method was found [ 171 to be very efficient 
in some scattering calculations but as an example of the solution following techni- 
que [13] it is not stable when applied to coupled equations problems. 

The first goal of this paper is an approximate-solution method for solving half- 
collision problems. It is different from the algorithm of Singer et al. [6] .in two 
essential points: 

(1) Instead of the scattering matrices F and To (defined as functions of the 
scattering coordinate, x) the matrix L is used as the invariant imbedding 
propagator of solutions of the system of differential equations. The properties of 
this propagator for homogeneous equations were discussed previously [18, 191, 
Here this discussion will be extended to take into account an inhomogeneity in the 
system of equations. Due to the use of the matrix L the realization of the invariant 
imbedding technique becomes simpler already at initial analytical stage. 

(2) The matrix L and some quantities related to it are accumulated for sub- 
sequent sectors of integration range according to appropriate recurrence relations. 
In the limit of zero-length sectors, these relations become differential equations 
[ 18,201 which correspond to those integrated in the Singer method. One of these 
equations is nonlinear. In consequence of using the recurrence relations in the new 
algorithm only the original linear differential equations must be integrated to find 
approximate expressions for the sought quantities in small sectors. 

It is almost obvious that because of the above differences the proposed algorithm 
should be more efficient than the existing algorithm of the same type. 

The second goal of this paper is an invariant imbedding algorithm applicable in 
case (II) of the two-potential problems. Correcting various dimensionality-reducing 
approximations in a perturbative way seems to be an approach of promising 
implications for future investigations of collision systems too complex to be treated 
within the full coupled channel approximation. In view of this fact any attempt to 
provide a useful tool for these investigations is, in our opinion, worth undertaking. 
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Both proposed algorithms are closely related to the log-derivative method of 
Johnson [21,22]. 

The analytical background for their derivation is given in Section 2. The L-matrix 
formulation of the two-potential problems presented there reveals some similarities 
to the formulation based on the matrix R [ 10-121. A discussion of this connection 
and of its practical implications is given in the Appendix. Details of the dis- 
cretization procedure employed in the derivation of the algorithms are described in 
Section 3. The last section is devoted to an estimation of the new algorithms. It is 
illustrated in part by numerical tests. 

2. L-MATRIX FORMULATION OF TWO-POTENTIAL PROBLEMS 

The starting point is the standard propagation relation for solutions of the 
system of N linear second order differential equations in an interval [x’, x”], 

t4-4 
( ) 4w’) =B(x..,x.)(:l::i)+~~~(x.,x)(mPx,)dx. (2) 

Sz is the 2Nx 2N Cauchy matrix [23] with blocks denoted as $2 = (2; 2); 4(x) 
stands for the inhomogeneous part in the system of equations, and the overdots 
denote derivatives with respect to x. A simple rearrangement of (2) leads to the 
relation 

which defines the propagator L = (i; g), 

(3) 

(4) 

and two additional quantities, Q and T, occurring only in the case of 
inhomogeneous equations, 

Q(x’, x”) = 42, ‘(xl’, x’) Jx;” QZ(x”, x) 4(x) dx, (54 

T(x’, XI’) = J;* [Q 4 x”, x)-12&d’, x’) 62, ‘(x”, x’) &(x”, x)] g(x) dx. ( (5b) 

In the case when the inhomogeneity depends on a solution of the corresponding 
homogeneous equations which vanishes at the point x’, i.e., when $(x) = V(x) ijo 
with eO(x’) = 0, one can exploit the relation 

$0(x) = fux, x’) $,(x7 = Q,(x, x’) Ux’, x”) +0(x”), (6) 
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and rewrite the definitions of Q and T in the form 

Q(x’, x”) = Q-(x’, x”) t,b,Jx”), (74 

T(x’, x”) = T-(X’, x”) Go(x”). U’b) 

The new matrices Q- and T- are independent of the value of Jl,, at the point x”. 
They can be found before this values is established. Thus, it becomes possible in this 
case to evaluate the inhomogeneous term for the system of equations 
simultaneously with the process of solving these equations. 

The propagator L and the quantities Q and T satisfy the following recurrence 
relations; 

where y is a point in the interval [x’, x”] and L(x’, y, x”) denotes the 2N x 2N 
block matrix constructed according to the formulas: 

-1 1 
L(x’, y, x”) = _ 1 

( 1 
1 4x’, Y, x”), 

Z(x’, y, x”) = [Ld(X’, y) - L,(y, x”)] ~ l. 

The relation for the propagator L has been already published [ 181 and shown to 
result from the recurrence property of the standard propagator CJ(x”, x’), 

Q(x”, x’) = Q(x”, y) Q(y, x’) for y E [x’, x”]. (10) 

The recurrence relations for the Q and T quantities result, of course, from the same 
property of the matrix Sz. They can be derived either directly from Eqs. (5a), (5b), 
and (10) or from the relation (8) after rewriting the definitions (5a) and (5b) in 
terms of the propagator L; 

Q(x’, x”) = -L2(x’, x”) 1;’ L; l(x, x”) 4(x) dx, Wa) 

T(x’, x”) = L3(x’, x”) j-Iv L; ‘(x’, x) d(x) dx. (lib) 
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The last formula for T is obtained with the aid of the recurrence relation (8) for the 
matrix L,. After replacing b(x) with V(X) L;- ‘(x’, x) L2(x’, x”) in both formulas, 
(lla) and (llb), one gets the expressions for the QP and T--matrices, 

Q-(x’, x”) = -L2(x’, x”) jXIu L; ‘( x, x”) V(x) L;‘(x’, x) dx LJx’, x”), (12a) 

T-(x’, x”) = L,(x’, x”) jX;’ L;‘( x’, x) V(x) L, ‘(x’, x) dx Lz(x’, x”). (12b) 

By proper exploiting of the recurrence relations (8) for the matrices L1, L3 and their 
inverses, one can derive from (12a), (12b) the following recurrence relations for Q- 
and T-. 

4x’, Y, x”) Q - (v, x”) - 

(13) 

x 4x’, Y, x”KT-b’, Y) - Q + b, ~“11 4x’, Y, ~“1 LAY, -0, 

where T+ and Q+ are defined by the formulas 

T+(x’, x”) = L3(x’, x”) jX;” L,‘( x’, x) V(x) L; ‘(x, x”) dx L3(x’, x”), 

s x” 
Q + (x’, x”) = -L2(x’, x”) L,‘(x, x”) V(x) L; ‘(x, x”) dx L3(x’, x”). 

x’ 

All recurrence relations should be supplied with values of the corresponding quan- 
tities for zero-length intervals. Obviously, the quantities Q, T, Q-, and T- vanish 
for such intervals. The propagator L for a zero-length interval [x’, x’] should be 
determined from the definition (4) and from the normalization of the Cauchy 
matrix; 0(x’, x’) = 1. It is evident that L(x’, x’) does not exist. For computational 
purposes, however, one can set 

-1 1 
W’,x’)= -1 1 c, 

( > 

where c is a large positive constant: c&l. 
To connect the above considerations with the description of the two-potential 

scattering problems, one has to apply the relation (3) to the solutions of the boun- 
dary value problems specified in the Introduction. One derives in that way the for- 
mulas relating the matrix F for the processes of interest to the propagator L and to 
the matrices T or Tp for Eq. (1). In the latter case, the formula obtained will con- 
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tain the matrix YO occurring in the boundary condition (lc) for the function I,+&). 
This matrix, however, can be expressed also in terms of the propagator L. The for- 
mulas for the matrices Y occurring in the problems (1 b( lb) do not depend, in fact, 
on any Q-quantity. This is because of the boundary condition (la) which arises 
usually in this form in 3-dim. description of a physical system. Quite often, 
however, l-dim. description must suffice. In such cases both boundary conditions 
for the solutions of the appropriate coupled equations are nonzero and the matrix 
Y is involved in both. So, the final formulas for this matrix become essentially 
dependent on the Q-quantities. 

Finally, one should mention some symmetry relations which take place in the 
case of Eq. (l), where the matrices B and V are real and symmetric [27]. Namely, 
in this case the following relations hold for the blocks of the propagator L [19], 

LT=L,, L: = Lq, LT= -L3, 

and on their basis the following can be proved for the matrices T’, Q+ 

(T-)== T-, T+ = -(Q-)‘, (Q+)== Q+. 

The present formulation of the two-potential scattering problems in terms of the 
propagator L and the associated quantities for inhomogeneous equations is only 
one of several possible invariant imbedding formulations. All formulations must be, 
of course, equivalent. So, from purely analytical point of view there is no major 
reason for distinguishing them. Quite important differences may arise, however, 
when computational aspects are taken into account. In this context it seems 
interesting to consider the connection between the present formulation of the scat- 
tering problems and the widely used formulation based on the matrix R. These con- 
siderations are postponed to the Appendix. 

3. ALGORITHMS 

The object of primary interest in this section will be the derivation of 
approximate expressions for quantities L, Q, T, Q *, and T’ in small intervals. 
After insertion of these expressions in the appropriate recurrence relations we will 
get an algorithm for evaluating these quantities over intervals of desired length. 

Determination of any invariant imbedding-type propagator for system of linear 
differential equations requires solving definite boundary value problems for these 
equations. The boundary value problems related to the propagator L(x’, x”) for the 
system (1) take the form [ 181 - 

_ _- 

[-$+B(x)] $*(x)=0, 

$‘(x’)= lT 1 0, $‘(x”)= ‘: 1. 

( 14a) 

14b) 
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The additional problem related to the quantities Q(x’, x”) and T(x’, x”) for 
inhomogeneous equations is 

[$+ B(n)] $Ax) = 4(x), W4 

II/,(x’) = 0, l),(x”) = 0. (15b) 

In terms of solutions of these problems one gets 

L(x’, x”) = ( 
$‘(x’) I+-(x’) 
$‘(X”) I+-(x”) ) 

and 

The solutions of the problem (Isa), (15b) with inhomogeneities V(x) $*(x), 
denoted correspondingly by $:(x), give the matrices Q*(x’, x”) and T*(x’, x”), 

Q+(x’, x”) Q-(x’, x”) $2 (x’) 
T+(x’,x”) tj:(x”) 

In a previous paper [18] a discretization procedure of the problem (14a), (14b) 
was presented which has led to the extended version of the log-derivative method 
for calculating the matrix L. An analogous procedure will be applied here to the 
problem (15a), (15b). 

Before the discretization is performed the problem must be converted to an 
integral equation form. This is done by means of the Green’s function, 

(3x9 Y)= w-‘cp-(x<)cp+(x>) (16) 

which is built from solutions of the equations 

d2 
-$ cp*(x)=o (17a) 

satisfying the boundary conditions appropriate for the L-matrix formulation, i.e., 

cp+(x’)= l2 
i 0, 

cp’(x”)= 0, 
i 1. (17b) 

W denotes the Wronskian of these solutions: W = cp - c+S+ - ci, -cp +, and x, (x, ) is 
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the usual notation for the smaller (bigger) from x, y values. As they can be easily 
found the explicit formulas for the cp * - and W matrices are 

a=~ 1, (p+(X)=X 1, 1 
x’ - y 

WE -- 
x” - x’ 1. (18) 

The integral equation form of (15a), (15b) is 

tiI(x) = -[lM G(x, Y)CWY) Icl,(y) - h)l& 

For its discretization the modified Simpson formula [24] is chosen which for an 
integrand g(x) with a discontinuous first derivative at the midpoint of an 
integration range [x0 - h, x0 + h] gives 

I 
xo + h 

x0-h 
gw-3 Cg(xo-h)+4g(x,)+g(x,+h)] 

+&+ra(x+E)--Q(X--E),. (20) 

Thus arise the algebraic equations 

‘J’AXi)= - f wkG(xi, Xk)CB(Xk) IcIAxk)-d(~k)I 
k=O 

-aiCB(xi) Il/AXi)-d(Xi)l for i = 0, 1, 2 ,..., M. (21) 

xk, Ok, for k = O,..., A4, are points and their weights in the ordinary Simpson for- 
mula, i.e., x k + 1 = xk + h, x0 = x’, x,,, = x”, o. = CD,,, = h/3, ok = 2h/3 for even k and 
ok = 4h/3 for odd k. The second term in (21) occurs only at unevenly numbered 
points xi, where ai= h2/6. For even i ai= 0. The above equations can be con- 
veniently rewritten in the form 

fbi)= - ? WkG(Xi, xk)[l +akBtxk)lp’ [B(Xk)f(Xk)-~(Xk)l? (22) 
k=O 

where the new functions, f(xk) for k = O,..., M, are defined as 

f(xk)= c1 + akB(xk)l $I(xk)-ak&xk). 

To proceed with the derivation, let us introduce the functions fi,[+ l(xi) for 
I = 0, l,..., M - 1, defined at two points, x[ and x,+ 1, by the following equations 
analogous in form to Eq. (22) for f, 

1+1 

h,,+ l(Xi) = - c GkGi,/+ l(Xi, xk)[l + akB(Xk)l -’ 
k=l 

x [B(Xk)fi,,+ ltxk) - 4txk)l. (23) 



122 FELICJA hfRUGAtA 

G ,,,+ 1 means the Green’s function (16) built from the solutions cp,$+ ,(x) of the 
problem (17a), (17b) in the interval [x’ =x,, x” =x,+ ,I. djk = ok for k = 0, M and 
cFjk = iok for k = 1, 2,..., M- 1. By solving Eqs. (23), one can find the formulas 

!2 I,‘+ 1 = -4/~/4(X’), ~‘,‘+1=q,+1~‘+1~(X’+1)~ (24) 

where qk = [l + akB(xk)]-l for k = 1, 1+ 1; for the quantities Q,,,, , and F,,,, , 
defined as 

0 /,r+ 1 =f’,,+ l(XA %+ 1 =A+ 1(X/+ 1). (25) 

These quantities arising from inhomogeneous equations correspond to the auxiliary 
propagators 

used in the derivation of the log-derivative algorithm for homogeneous equations 
[ 181. They are not direct approximations to the quantities Q and T in any sector 
[ x1, x,+ 1] but when assembled together with L-propagators according to the 
recurrence relations (8) and (9) over p subsequent sectors [xk, xk+r], for k=l, 
I+ l,..., I +p - 1 and I, p even, they give approximate values of these quantities in 
the interval [x,, xl+,, 1. Thus, in addition to the formulas for z,,,+ 1 found in [ 183, 

where Sk = [ 1 + tlkB(xk)] -‘&kB(~k), k = 1, 1+ 1, the formulas (25) for Q,,,+ r and 
q/f 1 are just what is needed for extending the log-derivative algorithm to 
inhomogeneous equations. 

The necessary formulas for the quantities &+ 1 and Fc+ I corresponding to the 
equations with inhomogeneous terms V(x) $ *(x) are 

Q -:+ 1= -416, u-d cl’? a?+, =o, 

qi+l=o, ~~+,=4’+~~‘+,~(x’+~)q’+,. 
(27) 

These formulas are obtained from (24) by inserting for d(xi) at xi= x,, x,+ r the 
expressions V(x,) $6, r(xi) with functions +,;+ l(xi) given by the equations 

‘+I 
ti&+ ,(Xi) = cp;+ ,(Xi) - 1 GkG(Xi> xk) B(Xk) $6, l(xk) 

k=l 

- alB(xi) *Is+ llxi). C-28) 
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Equations of this form arise from the discretization of the homogeneous problems 
(14a), (14b) with the aid of the formula (20) [lS]. Their solutions are 

For writing the final result of this section, some technical preparations remain to be 
made. First, the following notation is introduced for the approximate values of the 
L, T, Q, and T- quantities in the interval [x0, x,]; 

The same notation with an additional tilde will be used for the quantities 
accumulated according to the appropriate recurrence relations from the quantities 
defined for one sector by Eqs. (24) and (27). As was mentioned before, the quan- 
tities with and without tildes, coincide for 1 even. 

Furthermore, the following working quantities are introduced with the purpose 
of simplifying the formulas to be given, 

z, = h&j + 1 - hS,, 

t/ = h[:To,, + qr44br)l, 
t; = h [ Tiy[ + 43, W,) q/l. 

The final formulas, derived on the basis of the recurrence relations of the previous 
section, are 

eo,l=eo,,-l-~~,,-,Zr_llt,-l, 

t/ = 2hq,c+j(x,) + z,:‘, t/- 1, 

tr = 2hq,Gl V(x,) q/ + z,I’~ t,- lz,~ll. 

Adding to them the recurrence formula for L w found in [ 181 and the formula for z[ 
from the original log-derivative method, one gets the following two versions of this 
method applicable, respectively, to the two cases of the two-potential problems 
specified in the Introduction: 

(I) The “half-collision” version-the quantities required: TO,M, QO,,,, 
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h2 
to = 3 402 

-6+g,-z,‘, for I= 1, 3, 5 ,..., M- 1, 

z[= i 2-q,-z;_1, for I= 2, 4, 6 ,..., M, 

; 2 gd, + Z.L’l t,- 1 for 1= 1, 3, 5 ,..., M- 1, 

t,= 

$4, + z(-‘, t,- , for 1=2, 4, 6 ,..., M, 

Zb’) = EL:‘- , Z/Y’, 
eo,, = QO,l- 1 - @t,- 1 1 for I= 2, 3,4, ,..., A4, 5 

..,=i,,+-;h), 

QO,M = QO,M? 

where 

B, = B(x,), 4, = 4(x0 

(II) the version for inelastic scattering problems formulated in a manner 
related to the distorted wave approximation-the matrix TcM required 

t;=;vo, 

1 7 3 2 g, v,+zil,t,,z;_l, VI g, + z,:“, tl- 1 ZL’l 

t; = 
2h2 

for for 1=2, I= 1, 4, 3, 6 5 ,..., ,..., A4, M- 1, 

where V,= V(x,). 
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4. NUMERICAL TESTS AND DISCUSSION 

The “half-collision” version of the log-derivative algorithm was tested on a simple 
one channel problem related to the photoionization of atomic hydrogen 

d2 2 2 
p+;-;i+k2 1 x(r)= -4r2e-*‘, (30) 

x(O) = 0, (304 

x(r) 
4 

r-rm’ 
_ erCkr- (x/2)+ wkw(2kr)l~~ 

k 

More details on this problem are given in [S] where it was specified with an 
analogous purpose of checking a new computational method. In this case a version 
of the R-matrix propagation method was tested. 

As a check of correctness of our algorithm the values of the transition matrix 
element M, obtained in this work, are compared in Table I with the results reported 
in [S]. The question of interest is: What is the performance of the new algorithm in 
regions of rapidly varying potentials, such as the interval [0, 33 for the potential 
V(r) = (2/r2) - (2/r) in Eq. (30). The original log-derivative algorithm is known as 
more appropriate for such regions than the approximate potential procedures and 
the tests for the above problem suggest that this feature is maintained in the present 
generalized version. 

As an illustration to this point Figs. l-3 are given. They show errors of the 
(l-dim.) matrices L,(O, r) and T(0, r) for Eq. (30) with k2 = 1 calculated by the log- 
derivative algorithm, by the approximate potential procedures with constant 
approximating potentials, and with constant or variable step sizes. The errors are 
referred to the results of the approximate solution calculations with the step size 
h = 0.0025. 

TABLE I 

Test of Correctness of the Log-Derivative Method 
(Version I) on Problem (30~(3Ob)” 

k h4 M(R) 

0.4412 0.64684 0.6483 
0.6325 0.57729 0.5777 
0.1746 0.49673 0.4971 
0.8944 0.42667 0.4267 
1.0 0.36865 0.3690 
1.0954 0.32109 0.3211 
1.1832 0.28190 0.2819 
1.2649 0.24940 0.2495 

@ (R)-results by the R-matrix propagation method of [S]. 
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1 5 10 r 

FIG. 1. Error of L,(O, r) calculated by the log-derivative method (LD) and by the approximate 
potential procedure (AP) with the same as in (LD) constant step size h = 0.05. Calculations started from 
exact values of L,(O, re) at different points rg; rg = 0 (-); ra = 0.8 (---); rB = 6 (---). 

Figures 1 and 2 are in fact one more exemplification of the well-known difference 
between the approximate solution and approximate potential approaches. While 
the error propagation in the new algorithm is only slightly affected by starting the 
calculations from various points of the interaction range the differences in error 
level between the analogous calculations in the approximate potential approach are 
quite remarkable. The decisive factor is here clearly the shape of the potential in the 
region included. 

Besides the difference in error sources Figs. 1 and 2 show also a similarity 
between the tested methods resulting from their common invariant imbedding 
origin. Namely, the quantities propagated by both methods become singular at 
some points in the classically allowed region. These points correspond to the 
maxima of error encountered in all tests. The local character of these maxima 
should be considered as a manifestation of numerical stability of the invariant 
imbedding recurrence relations. 

For a comparison of the new algorithm to the approximate potential procedures 

1 5 10 r 

FIG. 2. Same as in Fig. 1 for T(0, r). 
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in respect of accuracy, one should note that both Figs. 1 and 2 concern calculations 
with the same constant step size h = 0.05. The better accuracy of the approximate 
solution method in treating the regions of rapidly varying potential is evident from 
these figures. 

The method was found to be more accurate also than the variable step version of 
the approximate potential procedure used. This is shown in Fig. 3. The slopes of the 
solid lines in this figure give 0(h4) convergence of the quantities calculated by the 
approximate solution method. The convergence in the constant step approximate 
potential method is of 0(h2) type, and in the variable step case it is not uniform. 
The criterion applied for changing step sizes was that of Stechel et al. [ 121. The 
quantitative picture of the relative accuracy of the tested methods as given in Fig. 3 
will change, of course, for other problems. For many channel problems, it may be 
even more favourable for the log-derivative method because additional errors, 
caused by rotations of the bases between sectors, arise in the approximate potential 
procedures. 

The final question to ask is: How would a comparison look if we compared the 
present “half-collision” version of the log-derivative method with the R-matrix 
,propagation method in respect of computational effort per sector. Obviously, the 
test on a one-channel model cannot serve here as a reliable basis for any quan- 
titative estimates. Still, in view of the well-known findings of Thomas et al. [17] 
concerning the performance of the original versions of these methods in solving 
coupled homogeneous equations one may be interested in getting at least an idea of 
what effect have the additional operations required for inhomogeneous equations 
on the relative efficiency of both methods. It is easy to count these operations in the 
log-derivative method. To calculate the quantities T and Q for a system of N 
coupled equations (Isa) with an inhomogeneity vector I++, one has to perform two 
multiplications of N x N matrices by vectors at each evenly numbered sector and 
three such multiplications at each odd sector. Evidently, this is not much additional 

number of sectors 

FIG. 3. Error of L,(O, 6) and T(O,6) versus number of sectors in the log-derivative method (-) and 
in the approximate potential procedures with constant (---) and variable [(A), L,; ( x ), T] step sizes. 
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work as compared to the work needed for the basic matrix operations involved in 
the evaluation of the propagator L (see also [lS; Eqs. 70-721): multiplication of 
Nx N matrices-two at each sector and inversions (of symmetric N x N 
matricesttwo at odd and one at even sectors. 

In the R-matrix propagation method, extra work is required to calculate the 
quantities A, and B, (Eqs. (A6), (A7)) which carry the information equivalent to 
that contained in the quantities T and Q (see Appendix). To get A, and BR, one 
needs three multiplications of N x N matrices by vectors at each sector (see Eqs. 
(29), (30) in [4]). Moreover, the integrals occurring in Eqs. (A8), (A9) must be 
evaluated (see the procedure for the quantities “SOS” and “sot” in [4]). Even 
though this is not a very detailed analysis, it indicates that the additional 
operations in the R-matrix propagation method outnumber the corresponding 
operations in the log-derivative method. Taking into account the fact that the num- 
ber of matrix operations per sector needed for the evaluation of the propagator R in 
the approximate potential approach is significantly higher than the number of the 
operations listed above for the propagator L [11-13, 171, one can expect that the 
new version of the log-derivative method, like the original version, is superior in 
regions of rapidly varying potentials. 

This suggests that a combination of the new algorithm with an appropriately 
extended version of the variable interval-variable step method [25] should give a 
very efficient procedure which would be a generalization of the hybrid log- 
derivative-VIVAS method [ 171 for inhomogeneous equations problems. 

While the confrontation of the approximate solution and approximate potential 
approaches was the main point of testing the “half-collision” version of the log- 
derivative algorithm other aspects become important in the case of the second ver- 
sion designed for two-potential inelastic scattering problems. As was mentioned, 
this algorithm is the first attempt toward applying the invariant imbedding 
approach to such problems. Thus, the aspect to emphasize is the numerical 
stability. In this respect, the proposed algorithm should be superior to solution 
following methods [13]. Obviously, this stability can be best appreciated when 
many open channels and some closed are coupled in a problem. We did not per- 
form any tests on such problems knowing that stability of our algorithm is guaran- 
ted by its invariant imbedding origin. An open question remains, of course, how 
profitable this feature can be in cases of interest. 

The performed tests were concentrated only on showing the type of convergence 
in the algorithm. As a very convenient test problem, the distorted wave version of 
the Secrest-Johnson model of vibrational excitation was chosen. The transition 
probabilities obtained for this problem were compared to exact values calculated 
according to the formula of Jackson and Mott [26]. A sample of this comparison is 
given in Table II. One can see from the table that the error of the numerical results 
reveal a tendency to be proportional to fourth power of the step size. 

Obviously, our estimation of both of the algorithms has only a preliminary 
character as being based on a rather limited computational material. It is believed, 
however, that the features of these algorithms, like their stability and convergence 



TA
B

LE
 

II 

C
on

ve
rg

en
ce

 T
es

ts
 o

f 
th

e 
Lo

g-
D

er
iv

at
iv

e 
M

et
ho

d 
(V

er
si

on
 I

I) 
on

 t
he

 &
cr

es
t-J

oh
ns

on
 

P
ro

bl
em

” 

E
rr

or
 

E
rr

or
 

E
rr

or
 

E
rr

or
 

E
rr

or
 

h 
po

4,
 

xh
-4

 
P

 o
-2

 
xh

-4
 

P
I+

, 
xh

-4
 

P
 1

-3
 

xh
-’ 

P
 2

-3
 

xh
-’ 

8 
0.

4 
0.

35
60

12
 

0.
20

9 
0.

59
72

05
( -5

) 
1.

53
 

0.
13

97
20

 
0.

33
1 

0.
68

76
87

( -7
) 

0.
44

7 
0.

42
95

03
( - 

2)
 

0.
14

6 
0.

2 
0.

35
41

50
 

0.
05

8 
0.

57
57

23
( -5

) 
1.

16
 

0.
14

08
69

 
0.

20
3 

0.
69

53
33

( -7
) 

0.
28

8 
0.

42
79

91
( -2

) 
0.

12
3 

$ 

0.
1 

0.
35

41
18

 
0.

01
6 

0.
57

47
16

( -5
) 

1.
09

 
0.

14
09

12
 

0.
18

8 
0.

69
56

34
( - 

7)
 

0.
26

8 
0.

42
79

12
( -2

) 
0.

11
9 

i3
 

0.
05

 
0.

35
41

18
 

0.
01

0 
0.

57
46

57
( -5

) 
1.

08
 

0.
14

09
14

 
0.

18
6 

0.
69

56
52

( - 
7)

 
0.

26
5 

0.
42

79
08

( - 
2)

 
0.

11
9 

5 
0.

02
5 

0.
35

41
17

 
0.

00
9 

0.
57

46
53

( - 
5)

 
1.

08
 

0.
14

09
14

 
0.

18
5 

0.
69

56
53

( -7
) 

0.
29

1 
0.

42
79

07
( - 

2)
 

0.
11

9 
is

 
Ex

ac
t 

0.
35

41
17

 
0.

57
46

53
( - 

5)
 

0.
14

09
14

 
0.

69
56

53
( - 

7)
 

0.
42

79
07

( - 
2)

 
u 

a 
D

is
to

rte
d 

w
av

e 
re

su
lts

 fo
r 

E 
= 

8 
an

d 
m

 =
 4

. 



130 FELICJA MRUGALA 

properties, support the opinion that they may be useful in solving inhomogeneous 
equations problems of scattering theory. Recalling the role of the original log- 
derivative method in the inelastic collision investigations, one can hope that the 
present extended versions of this method will find equally successful applications to 
two-potential problems of physical interest. 

APPENDIX: CONNECTION BETWEEN THE L-MATRIX AND 
R-MATRIX FORMULATIONS OF SCATTERING PROBLEMS 

The R-matrix formulation of the problem of solving a system of second order 
linear differential equations starts from the relation 

(AlI 

which originates also in the standard relation (2) for this problem. Only a slightly 
different sign convention is applied here in comparison to the papers [ll, 121. 
Thus, the quantities involved in the L- and R-matrix formulations are connected as 
follows: 

R=L-‘, 642) 

($ -L-l(F). (A3) 

The most interesting point, however, lies in comparing the recurrence relations 
appropriate for both formulations. The structural identity of the recurrence 
relations for the corresponding blocks of the propagators L and R has been stated 
in [18]. The same correspondence also takes place between the pairs of quantities 
(Q, T) and (QR, T,) introduced for inhomogeneous equations. The proof of that 
remains a matter of deriving the relations for QR and TR. Essential for this 
derivation are the recurrence relations for the matrices Rj, i= 1,2, 3,4 (i.e., the 
relations (8)) which should be applied to the following expressions: 

Q,(x’, x”) = Rz(x’, x”) J;# R,‘(x, x”) R,(x, x”) 4(x) dx, (A4) 

T,dx’, x”) = -R,(x’, xy Jx;” R;‘(x’, x) RJx’, x) d(x) dx. (W 

These expressions are obtained from Eqs. (2) and (Al) after some algebraic 
manipulations involving also the relations (8) for the R,-matrices. Thus, the struc- 
tures of the recurrence relations from the L- and R-matrix approaches to systems of 
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inhomogeneous equations are the same; the corresponding relations can be conver- 
ted one into the other by the simple replacements: 

Q+Qie T+TR, Li+Ri for i = 1,2, 3,4 or vice versa. 

This implies in practice a possibility of using all existing approximate potential 
procedures for the matrix R almost directly to the matrix L. The required adap- 
tation is really slight and consists mainly in exploiting the relation (A2) in all sec- 
tors of integration range. It should be remainded here that in the approximate 
potential procedures the propagators for small sectors are determined as diagonal 
matrices. Similar practical suggestions can be made concerning evaluation of the Q 
and T quantities with the help of approximate potential procedures for the quan- 
tities QR and T,. As was mentioned in the Introduction, there are two papers where 
such procedures were proposed. 

In the paper by Schneider and Taylor [S], the recurrence relation for T, is 
derived (in a different way) and implemented into the program for solving systems 
of homogeneous differential equations by the R-matrix propagation method. 
Kulander and Light [4] refered to the same method. They evaluated the overlap 
integrals 0(x’, x”), 

0(x’, x”) = jx;” f(x) tie(x) dx, (A61 

between the inhomogeneity vector d(x) and the solution of the system of 
homogeneous equations tiO(x) by means of propagating the quantities A, and B, 
occurring in the formula 

0(x’, x”) = -AR(x), x”) I&X’) + B,Jx’, x”) t&x”). 647) 

This formula results from applying the relations (2) and (Al) to the function It/,,(x) 
in (A6). Simultaneously one gets the expressions 

A&‘, x”) = -[I* c,bT(x)[Ql(x, x’) Rl(x’, x”) + Q,(x, x’)] dx, (A8) 

BJx’, XI’) = [I* d’(x) 0,(x, x’) R2(x’, x”) dx. (A9) 

With the aid of appropriate relations given in this paper one can transform these 
expressions to a form that demonstrates the following simple connection: 

A,= -Q,‘, B,= -T;. 

This connection confirms the opinion of Schneider and Taylor [S] about the 
possibility of computing the quantity TR (and Q,J by directly exploiting the 
elaborated in details procedure of Kulander and Light for the overlap integrals. 

SSl/SE/l-9 
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After a modification not affecting the speed of this procedure, it will give also the 
quantities T and Q. To realize this point, one should express the integral (A6) in 
the form 

0(x’, x”) = -AL(X’, x”) l/9&c’) + BJX’, x”) It/()(x”), 

and prove that the quantities A, and B, are in fact the transposed quantities Q and 
T, i.e., 

A, = QT, B, = TT. 

The formulas for A, and B,, 

AL(X’, x”) = -5:” $dT(x)[Qn,( x, x’) + !s,(x, x’) Lr(x’, x”)] dx, 

BL(x’, x”) = jx;” d’(x) Q2,(x, x’) L&c’, x”) dx, 

involve the same integrals as the formulas (A8) and (A9) for A, and BR. 
The above remarks can be concluded with the statement that the analytically 

equivalent L-matrix and R-matrix formulations are equivalent also in some prac- 
tical sense. Namely, they seem to be equally suitale for constructing approximate 
potential algorithms for solving homogeneous or inhomogeneous coupled 
equations. The same statement, however, is rather not expected to be true when the 
approximate solution approach to differential equations comes into consideration. 
A specific choice of the discretization procedure within this approach may favour 
one or another formulation of a problem as leading to simpler and more efficient 
algorithm for its solution. 

The procedure described in Section 3 can serve as an example of a procedure 
which is better suited for the L-matrix formulation. The important element of this 
procedure is the conversion of the boundary value problems for the matrix L to the 
integral equation form. It should be noted that the extremely simple form of the 
Green’s function used to this end was very essential for the final shape of the 
derived algorithms. There would be no possibility of using a simple Green’s 
function if the derivation were started from the R-matrix formulation. In this case, 
one has to consider the boundary value problems for the matrix R, 
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The simplest Green’s function for converting these problems to an integral equation 
form is built from the sine and cosine functions. 
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